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AbstrAct
The past few years have witnessed a remarkable 

rise in interest in driver-less cars; and naturally, in par-
allel, the demand for an accurate and reliable object 
localization and mapping system is higher than ever. 
Such a system would have to provide its subscribers 
with precise information within close range. There 
have been many previous research works that have 
explored the different possible approaches to imple-
ment such a highly dynamic mapping system in an 
intelligent transportation system setting, but few 
have discussed its applicability toward enabling other 
5G verticals and services. In this article we start by 
describing the concept of dynamic maps. We then 
introduce the approach we took when creating a 
spatio-temporal dynamic maps system by presenting 
its architecture and different components. After that, 
we propose different scenarios where this fairly new 
and modern technology can be adapted to serve 
other 5G services, in particular, that of UAV geofenc-
ing, and finally, we test the object detection module 
and discuss the results.

IntroductIon
The concept of dynamic maps stems originally 
from the foundation of cooperative intelligent 
transport systems (C-ITS), which requires that all 
automated vehicles be connected and aware of 
their surroundings, and have access to static and 
dynamic geographical traffic data.

To better understand where dynamic maps are 
coming from, we need to explore how an intel-
ligent transportation system (ITS) is built. An ITS 
seeks to ensure sustainable transportation, and 
guarantees convenience and mobility to its service 
users. It is structurally built on four layers [1].

Physical Layer: It contains all the components 
that come together to form a transportation envi-
ronment, including pedestrians, vehicles, and infra-
structure. A component of the physical layer is 
identified as an agent that is aware of its surround-
ings, and can alter its behavior and communicate 
with other agents.

Communication Layer: It ensures real-time 
communications between the physical layer ele-
ments. Many research works revolve around this 
ITS layer [2, 3]. These communications can be cat-
egorized as follows:
• Fixed point-vehicle communications: between 

vehicles and infrastructures
• Fixed point-fixed point communications: 

between infrastructures

• Vehicle-vehicle communications: between vehicles
Operation Layer: It collects traffic data from road 

components and stores it to later redistribute to the 
physical layer of the concerned vehicles through ser-
vices that are embedded in the service layer.

Service Layer: It is where the services that are 
used by traffic agents are deployed.

Several projects and research works have 
shown great interest in the concept of dynamic 
maps, and in attempting to deploy this technolo-
gy to enable automated driving, one of the main 
challenges they have been faced with is the time-
ly and accurate positioning of traffic agents. This 
challenge, however, is the key enabler of dynamic 
maps. By analogy to this idea of a highly dynam-
ic precise mapping system of road components, 
we can reflect on the core functions of unmanned 
aerial vehicle (UAV) geofencing.

Geofencing is a virtual barrier that geographi-
cally traces the different zones in which a certain 
agent can move into and within. It was adapted for 
unmanned aircraft from cattle monitoring, where 
livestock have GPS collars that are programmed 
with map boundaries and send alerts if they leave 
these predefined zones. The idea is that, similar to 
driver-less cars, UAVs would be connected and 
have access to a mapping system that traces these 
virtual boundaries for them. These dynamic-map- 
enabled UAVs can be applied to agriculture by giv-
ing farmers a bird’s-eye view of their fields, and can 
go as far as being used for crop dusting and spray-
ing. In fact, in 2015, the Federal Aviation Adminis-
tration approved Yamaha RMAX as the first drone 
carrying tanks of fertilizers and pesticides to spray 
crops; it weighed over 25 kg.

The remainder of this article respects the fol-
lowing structure. The following section covers 
the state of the art of the local dynamic map 
(LDM). Then we describe the architecture and 
different components of our LDM system and 
introduce in more detail our approach to satisfy-
ing one of the key enabling functions of dynamic 
maps: the real-time detection and classification 
of objects captured by the LDM’s subscribers. 
Then we discuss the applicability of the LDM 
to better enable other fifth generation (5G) ver-
ticals beyond driver-less cars. To this end, we 
start by describing some use cases of the LDM in 
automated driving and then move on to propose 
some of its use cases for UAV geofencing. Then 
we present the experiments we have performed 
on the real-time object detection system we 
have implemented. These experiments showcase 
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EMERGING INFORMATION AND COMMUNICATION TECHNOLOGIES FOR AUTONOMOUS DRIVING the system’s performance with different resourc-
es and inputs. The final section concludes with 
possible future works.

relAted Work
Despite its implementation remaining a thing of the 
future, the concept of dynamic maps has actually 
been around for nearly a decade. It started with 
the SAFESPOT project in 2010, before being stan-
dardized a few years later, then gaining traction 
after Japan’s 3D maps project. Before we delve 
into what dynamic maps are and what they can be 
used for, we first cover some of the research work 
that has been done on the subject over the years.

SAFESPOT Project: SAFESPOT is a research 
project co-funded by the European Commission 
Information Society Technologies. It creates a 
dynamic network where vehicles and road infra-
structure communicate to increase an ITS station’s 
level of awareness of its surroundings, and prevent 
accidents and maximize safety in an automated 
driving setting [4]. It introduces a definition of the 
LDM structure and its Object Model within work 
project 7.3.1 [5].

The first standard came in 2011 in the European 
Telecommunications Standards Institute (ETSI) TR 
102 863 (V1.1.1) report [6]. It defined the LDM as a 
“conceptual data store” situated within an ITS station, 
and contains topography, location, and status data 
that covers the area surrounding it and the other ITS 
stations contained within it. The second ETSI report, 
the ETSI EN 302 895 (V1.1.0) final draft [7] came 
in 2014 as an extension to the first one detailing 
the processes of the LDM application programming 
interface’s (API’s) functions, in particular, those of the 
management interface, and introducing LDM data 
objects. The International Standards Organization 
(ISO) standards ISO/TS 17931:2013 [8] and ISO/TS 
18750:2015 [9] also defined an architecture of the 
LDM similar to that of the ETSI standard.

In 2013, Netten et al. introduced DynaMap as 
an implementation of aan LDM for infrastructure 
ITS stations [10]. Instead of serving as a data store 
that is accessible through SQL queries, they imple-
mented an information system where data is main-
tained and processed in memory by different types 
of components. Shimada et al. also made an LDM 
implementation in 2015. They based it on the spec-
ifications defined by the SAFESPOT project [11]. 
They used OpenStreetMap as their source of map 
data. Then they evaluated the performance of this 
LDM implementation while varying the number 
of cars, and the computer environment where the 
application is embedded. In 2016, Japan launched a 
3D maps project under the support of the Japanese 
government’s Strategic Innovation Promotion Pro-
gram Innovation of Automated Driving for Univer-
sal Services (SIP-adus). The project aimed to create 
high-definition 3D maps in an effort to equip auton-
omous vehicles with a dynamic mapping system and 
have them on the road by 2020. This concept is sim-
ilar to what Xu et al. did in 2017 [12]. They proposed 
a system that created a  point cloud map using ste-
reo cameras instead of LIDAR equipment. Also in 
2017, Ravankar et al. took a different approach. They 
proposed a system that uses the concept of dynam-
ic maps, combines it with vehicle-to-everything 
(V2X) communications in order to create a network 
between robots that enables them to travel through 
a map and avoid obstacles using the data exchanged 

through the network [13]. In fact, these networks 
play a crucial role in enabling automated driving. It 
was within this scope that Zhang et al. introduced 
their work in 2018 to demonstrate that vehicular 
communication networks (VCNs) can improve the 
onboard sensing functions of vehicles [14]. They 
argued that this enables them to minimize a vehicle’s 
blind spots and did a case study to showcase how 
VCNs can help with traffic jams.

Our article introduces a system that maps out 
objects in a vehicle’s vicinity not only by location 
but by timestamp as well. It provides its subscribers 
a spatio-temporal view of their map, and enables 
them to access an environment state that could 
have occurred at a previous timestamp.

dynAmIc mAps ArchItecture
concept And lAyers

The LDM has four layers containing different types 
of data that range from static to highly dynamic. 
They are as follows:
• Permanent static: Static information provided 

by geographic information systems (GIS) and 
map providers. It includes intersections, points 
of interest (POIs), and roads.

• Transient static: This layer contains information 
like lane data, static ITS stations, traffic data, 
and landmarks.

• Transient dynamic: In this layer we have the 
semi-dynamic data like road, weather, and traf-
fic conditions or light signal phases.

• Highly dynamic: This indicates data like vehi-
cles’ locations and pedestrians’ positions and 
trajectories.

ldm ImplementAtIon: system ArchItecture
Dynamic maps are mainly envisioned to serve the 
autonomous driving vertical. This highly intelligent 
service allows no room for error. Thus, in order for 
an ITS station to rely fully on the data provided by 
an LDM server to make system control decisions, 
the latency by which this data is generated and 
transmitted needs to be minimal. To this end, we 
created a live streaming service that would receive 
real-time feeds from vehicles, process them to 
detect the objects, draw boxes around the detect-
ed objects, and stream back the new frames.

As we can observe in Fig. 1, our system archi-
tecture is distributed on three servers, each provid-
ing specific services.

The Streaming Server: This server is dedicated 
to receiving and broadcasting live streams from 
and to end users (i.e., vehicles). It has two separate 
instances. The first one receives the streams from a 
token authenticated vehicle, verifies its token, then 
triggers the object detection service. The second 
instance receives the generated video frames with 
the bounding box detections and streams it to the 
other vehicles.

The Object Detection Server: This is a GPU 
server. It hosts the object detection service. It 
receives the video frames from the streaming serv-
er instance 1 and runs the object detection. While 
the object detection is running, the service draws 
the bounding boxes of the detections on the video 
frames, and streams these back in real time. In 
parallel to this process, the object storage service 
sends the detected objects to the LDM API server 
to store them in the database.

Dynamic maps are 
mainly envisioned to 

serve the autonomous 
driving vertical. This 

highly intelligent ser-
vice allows no room 

for error. Thus, in order 
for an ITS station to 

rely fully on the data 
provided by an LDM 

server to make system 
control decisions, the 
latency by which this 
data is generated and 

transmitted needs to be 
minimal.
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The LDM API Server: It hosts three different 
modules:
• Authentication module: This module allows the 

users to subscribe to the system, and identify 
themselves through a token that is sent with 
most of the requests that go through the system.

• Device tracking module: This module tracks the 
streaming vehicles’ locations and keeps them 
up to date in a real-time database. This module 
is also used to provide a real-time map of the 
streaming devices’ locations.

• Data management module: This module con-
nects to the relational database and manages its 
records. It also provides the LDM user interface 
with data for two types of maps. The fi rst is an 

object map, where traffic agents are mapped 
out not only by location, but by timestamp as 
well. This enables the end user to access a map 
state from a previous timestamp and view the 
recorded objects. The second map presents 
the real-time locations of the streaming vehi-
cles and their status (Live/Off line). The user can 
choose to view a live stream with the detected 
objects as it is recorded, or view an older saved 
stream from a previous timestamp.

reAl-tIme obJect detectIon: process oVerVIeW
As previously explained, we use two different 
RTMP servers: one that receives the streams and 
triggers the object detection service, and anoth-
er that receives the edited video frames with the 
detected objects and streams them back to the 
end user (Fig. 2).

Once the object detection service receives the 
video streams, it processes them frame by frame, 
extracts the object features, and classifies them 
using a pre-trained model. The object detection 
service uses Tensorflow-GPU with OpenCV. The 
detection is done using the SqueezeDet open 
source model [15]. After detecting the classified 
objects, the service draws boxes around them, and 
specifi es their classes and the accuracy percentage 
of each detection. It then transmits the new video 
feed to the other RTMP server, which will in turn 
serve it to the end user.

ApplIcAbIlIty
When looking at the functions off ered by the LDM, 
we can’t help but draw the link between what this 
technology has to off er and what UAV geofencing 
requires as system functions. But to understand 
how we made the connection between a concept 
that is mainly applied to serve autonomous driving, 
and UAV geofencing, we fi rst go over an example 
of an LDM use case within an ITS.

AutomAted drIVInG
An autonomous vehicle is defined in a way that it 
would be able to recognize and locate objects in its 
environment, and analyze the collected data to be 

FIGURE 1. System architecture.

FIGURE 2. Process of the real-time detection and streaming.
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able to steer and navigate with little to no human 
assistance [16, 17]. A driver-less car is equipped 
with many detection tools that enable it to sense its 
surroundings. For our implementation we focus on 
the data collected through the cameras, but other 
research works have paid closer interest in other 
detection tools, such as LiDAR equipment [18].

In Fig. 3 we showcase an example of dynamic 
maps’ application in an automated driving con-
text. As shown, the blue vehicle obscures an area 
in the red vehicle’s line of vision. This area is big 
enough to hide the cyclist. In an LDM setting, both 
vehicles are subscribed to the LDM; the blue vehi-
cle detects the cyclist, then sends a request to the 
LDM API. The Information Management module 
then stores the location of the cyclist in the LDM 
data store. The red vehicle is constantly updating 
its location through the application interface of the 
LDM. Once it enters the close vicinity of the cyclist, 
an event is triggered, and the information access 
module notifi es it of the crossing cyclist to engage 
the control system for collision avoidance.

uAV GeofencInG
Similar to the way the LDM has been deployed 
to enable automated driving, the services that this 
technology provides can be adapted to enable 
other 5G verticals.

We envision a mobile edge-cloud-based map-
ping system, where UAVs would have access to 
semi-static information like no-fl y zones and highly 
dynamic information like other aircraft’s accurate 
positions. The UAVs situated within a certain vicini-
ty would have a dedicated mobile edge-computing 
(MEC) server that would enable them to commu-
nicate their locations with short latencies. Diff erent 
MEC servers could also be connected to a central 
cloud that would allow these UAVs to map out 
zones even outside their vicinity and fl y out of it if 
needed (Fig. 4).

In an agricultural setting, farmers could upload 
data that traces the mid-air virtual barriers of a fi eld  
on a map. This data would then be accessible to 
the UAVs that would be used for crop-spraying by 
fl ying over the pre-specifi ed areas. This technology 
would also enable other farming functions like cat-
tle monitoring. If deployed, an LDM could be the 
solution to the collision avoidance problem and 
would enable many other UAVs use cases, such 
as surveillance and communication recovery [19].

eXperIment And results
In order to make an informed decision on wheth-
er or not this system can be used in a dynamic 
map setting, we tested its performance with diff er-
ent instance fl avors and diff erent video qualities, 
and recorded the results.

system performAnce WIth 
dIfferent serVer InstAnce types

We started off by testing the system with differ-
ent object detection server instances that vary 
in memory and processing power. Since we are 
using Tensorflow-GPU for the detection with 
CUDA, we needed a computer with an NVIDIA 
graphic card, so we hosted our services on AWS 
EC2 p2 and p3 instances. Table 1 describes the 
specifi cations of each instance on which we test-
ed the system.

We ran the object detection service on the  
same video on the aforementioned instance types, 
and measured the average detection latency by 
frame.

We defi ne two measurements:
• Detection time: time of extraction of features 

from the video frame
• Filtering time: time of classifi cation of the object 

using the pre-trained model
We then recorded the results presented in Fig. 

5a. We noted that there was not a big diff erence in 
the classifi cation time between the three instances, 
with the p3.8xlarge instance giving the best per-
formance due to its high computational power, 
and with the p2.xlarge instance giving the highest 
average latency with less than a 2 ms difference. 
However, for the feature extraction time (i.e., the 
detection time), we recorded a bigger latency 
on the p3.2xlarge instance than on the p2.xlarge 
instance, despite it being more powerful in terms 
of system resources. The p3.8xlarge instance had 
the lowest latency of detection with close to a mil-
lisecond of a diff erence from that of the p2.xlarge 
instance.

Amazon’s p2 instances use NVIDIA’s GK210 
GPUs, whereas the p3 instances use the Tesla 
V100. Some of the p3 instances also support 
NVLINK, which enables the GPUs to share inter-

FIGURE 3. Automated driving use case for dynam-
ic maps.

FIGURE 4. UAVs’ VCN architecture.

TABLE 1. Server fl avors.

Instance GPUs
GPU 
memory

vCPUs
Main 
memory

p2.xlarge 1 12 GiB 4 61 GiB

p3.2xlarge 1 16 GiB 8 61 GiB

p3.8xlarge 4 64 GiB 32 244 GiB
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mediate results at high speeds. In our case, only 
the p3.8xlarge instance supported NVLINK. We 
concluded that the optimal instance for our use 
case was the p2.xlarge, even though the p3.8xlarge 
gave the best performance, given that the differ-
ence in latency wasn’t big enough to be worth the 
upgrade unless the system is deployed in a set-
ting where the server deals with a big number of 
requests per second.

system performAnce WIth dIfferent VIdeo QuAlItIes
We ran the object detection process on the same 
video with different qualities. Then we measured 
the average latency of feature extraction and clas-
sification by video frame and recorded the num-
ber of detected objects for each video quality.

From Fig. 5b, we remarked that the detection 
has the lowest latency with the 1080p quality, 
whereas the latency of detection for the 480p 
and 720p videos were somewhat the same. In 
order to form a better understanding of why we 
obtained these results, we chose a random video 
chunk of just under 3 s and recorded the follow-
ing measurements frame by frame:
• True positives (TP): Number of correct detections
• False positives (FP): Number of incorrect detec-

tions
• False negatives (FN): Number of missed objects

We recorded the results for the three video 
qualities (Fig. 6). We observe that the system has 

the worst performance in terms of accuracy with 
480p. However, it performs somewhat the same 
with 1080p and 720p. In fact, to better portray 
these results we calculated the precision and recall 
of the system for the whole video for each quality 
as defined:

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

The recall represents the true positive rate. 
We present the results in Table 2. We can see 
that the system has both better precision and 
recall with 720p than with 1080p. This is due 
to the fact that the quality of the images in the 
datasets used for training generally have lower 
quality. However one drawback to this is that 
with 720p, the system recorded slightly more 
false positives than with 1080p. This is due to the 
blurry frames where the neural network detects 
objects in frame coordinates where there are no 
objects from our classes.

We also recorded the system resource usage 
when running the experiments (Fig. 7), and 
observed that the program consumed the high-
est amount of server resources with 1080p, even 
though it recorded almost the same precision and 
recall with 1080p as with 720p. However, the pro-
gram was faster at finishing the whole detection 
process with 1080p than with any other quality. It 
took the longest time with the 720p, since this is 
when we detected the highest number of objects.

To conclude, after testing the system in different 
settings, we can observe that with all resources and 
inputs the average latency of the object detection 
process per frame remains under 100 ms, which 
is an acceptable result given that the new video 
feeds in which the detection results appear are 
streamed back frame by frame. Thus, the latency 
is minimal, and any noticeable delay can only be 
attributed to the streaming process rather than the 
object detection.

conclusIons
The concept of dynamic maps has gained a lot of 
traction in recent years, which only goes to show 
how powerful a tool it can be if deployed success-
fully. But its main challenges remain those of an 
accurate object detection and positioning system 
with minimal latency. In this article we introduce a 
system that satisfies part of the LDM and focuses on 
the latency challenge by measuring it with different 
inputs and system resources in order to determine 
the perfect setting for optimal performance.

In future works, we will test the latency of the 
streaming process and try to minimize it. We will 
also shift our focus to the positioning services, and 
test their accuracy and latency. The implementa-
tion we have done within this research work is a 
small part of a bigger system that serves multiple 
other functions. One of the other services that this 
system should be able to provide is object track-
ing and identification through video frames and 
streams from different sources. To be able to apply 
our current system in an automated driving or a 
UAV geofencing setting, we will have to imple-
ment a service that identifies the detected objects 
and ensures that no duplicates are stored in the 
LDM data store.

FIGURE 5. Average detection and filtering latencies in different settings: a) 
latency with different instance types; b) latency with different video quali-
ties.

(a)

(b)
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FIGURE 6. Number of positive and negative detections with diff erent video qualities.

TABLE 2. Precision and recall measurements.

Video qualities 480p 720p 1080p

Precision 0,51 0,74 0,73

Recall 0,07 0,88 0,86

FIGURE 7. System resource usage with diff erent video qualities. 


