
UAV mission optimization in 5G: On reducing
MEC service relocation

Samir Si-Mohammed1,2, Adlen Ksentini1, Maha Bouaziz1, Yacine Challal2, and Amar Balla2

1EURECOM, Sophia Antipolis, France
2Laboratoire des Méthodes de Conception de Systèmes, Ecole nationale Supérieure d’Informatique, Algiers, Algeria

1{name.surname}@eurecom.fr
2{fs_si_mohammed, y_challal, a_balla}@esi.dz

Abstract—Unmanned Aerial Vehicle (UAV) applications and
services have gained a huge deployment and adoption in different
fields, such as the military domain (Defense or reconnaissance)
and the civilian domain (Healthcare, surveillance, and transport).
UAV operations are generally critical and require, during opera-
tions, a control link with the drones, which should be reliable with
very low latency. To ensure low-latency, 5G architecture intends
to deploy Mobile Edge Computing (MEC) servers, which provide
cloud computing capabilities close to the end-users. Consequently,
it is envisioned that the AutoPilot application will be deployed
at the MEC in order to ensure a low latency connection to the
drones. However, the high mobility of drones makes the migration
of the AutoPilot applications among MEC servers unavoidable; in
order to maintain a low latency connection with the flying drones.
This may lead to frequent downtime of the service, which may
impact the AutoPilot performances, and hence service migrations
should be limited as much as possible. Accordingly, this paper
aims to reduce the number of service migrations of drones by
introducing novel algorithms that act at the mission planning
phase, where the path of the drones is defined.

Index Terms—UAV, Flight planning, Drones, 5G, MEC.

I. INTRODUCTION

Among the industries that have lately seen a huge and fast
development, we may quote the Unmanned Aerial Vehicle
(UAV) industry. With several applications, from surveillance
to healthcare, drones are knowing great popularity among
different users, from companies for Business purposes, to
governments for Security aims. In all cases, the necessary
conditions of the safe progress of a drone’s flight is the
reliability of the wireless communication held with the drones
in order to control their trajectory and avoid collisions with
other flying drones. The communication link from the ground,
or from the Drone Pilot to the Drones is known in UAV
terminology, as the control and command link, or C2 Link
[1]. It is foreseen that C2 link is extremely important as, in
addition to carrying the command of the Drone Pilot to control
the drones’ trajectory, it gathers information from drones, such
as the position or the speed. This information allows the
Drone Pilot to detect any risk of collision with an obstacle
or other drones. Consequently, this link should be secure, and
benefiting from very low latency aiming at ensuring that the
control requests will be done in real-time.

Meanwhile, the recent rise of 5G technologies, and their
ability to support highly reliable and low latency services,
via the Ultra Reliable Low Latency (uRLLC) [2] service,
represents an interesting opportunity for the expansion of
UAV applications and services. Indeed, 5G technology is
assumed to guarantee wider bandwidth and very low-latency
connectivity, which definitely places it as a key enabler of
UAV-based services and applications. 5G brings into light
several new concepts that can be beneficial for UAV. 5G
New Radio (NR) provides larger bandwidth (up to 100 MHz
in < 6 GHz frequency band, and up to 400 MHz in >
6 GHz frequency band) [3] to accommodate high data-rate
demanding applications, such as VR/AR, 4K video streaming,
which may be used by UAVs for high-quality video streaming
or remote steering of the UAVs. Moreover, 5G NR uses
new physical layer numerology that drastically reduces Radio
Access Network (RAN) latency, which when combined with
Mobile Edge Computing (MEC) [4] capabilities at the vicinity
of the radio network, will allow achieving a very low latency
for the C2 link. Besides using 5G for communicating with
drones, the Drone Pilot will be hosted at the MEC; hence
guaranteeing very low-latency communication for the C2 link.
The challenges that arise in a MEC-enabled 5G architecture
for the efficient placement of the virtual network functions
(VNFs) are discussed in [5].

The deployment of MEC [6] is assumed to be very dis-
tributed, i.e. several MEC servers will be deployed close to
end-users. One MEC server will cover a set of base stations,
hence covering a limited geographical area. However, as
drones are highly mobile, they can go out of the coverage area
of a MEC server, which may increase the latency; hence per-
turbing the C2 link (lead to a threat in the safety of the drone’s
flight). One solution usually employed to keep the benefit of
the MEC, in terms of low latency connection, is to migrate
the Drone Pilot application among MEC servers (known as
service migration) [7], by following drones mobility. This will
ensure that the Drone Pilot application is always hosted by
the MEC server covering the area (set of base stations) where
the Drones are located. Nevertheless, service migration has a
negative effect. Indeed, during the migration, the service is
down (called downtime) for a few seconds. This may affect



negatively the C2 link, and thus service migrations need to be
limited to a minimum (only when deemed appropriate). In this
paper, we propose to reduce the service migration downtime by
minimizing the number of Drone Pilot migrations among MEC
servers. To achieve this objective, we propose an algorithm
to be used offline and during the mission planning phase,
where the Drone Operator prepares the plan of the flight
in accordance with the 5G Network Operator. The proposed
algorithm aims at selecting the flight path, from the start point
to the landing point (drone’s flight plan), by considering not
only the shortest path but also reducing the number of service
migrations.

This paper is organized as follows: Section II details the
steps for UAV Flight Planning. Section III formalizes the
problem and introduces the proposed algorithms. Our results
are presented in Section IV. Finally, the paper is concluded in
Section V.

II. FLIGHT UNFOLDING

In general, the deployment of drones should follow several
steps [8], divided into three blocks: (i) Scope Definition
Block; (ii) Drone Block consisting of Flight Planning, Flight
Implementation, and Data Acquisition; (iii) Software Block
where Data Analysis, Data Interpretation and Optimization
are conducted. In the first block, the mission statement is
clearly established and precise objectives are defined; ex. for
network traffic analysis and behavioural studies. The second
block consists of preparing the flight, considering Safety &
Environment conditions, and route planning. The third and
final block proceeds during the flight, where all the opera-
tions (Analysis, Interpretation and Optimization) on the Data
acquired by the Drones are executed.

Flight Planning : This task is extremely important, for
security reasons, since the conditions of the flight are negoti-
ated at this level. The main concerned stakeholders [9] are, as
showed in Fig. 1 :

• Customer: The entity or user wanting to benefit from
a Drone Service. It can be an individual (For enter-
tainment), a company (Delivery purposes, etc.) or even
a government. The application on the UAV can vary
depending on the customer.

• Drone Operator: The entity responsible of controlling the
Drones, and offering UAV-based services, and proposing
Flight plans depending on the needs of the Customer. The
Drone Operator is the entity which deploys the Drone
Pilot as an application at the edge.

• Network Operator (NOP): The entity holding the 5G
infrastructure and offering 5G coverage.

• UAV Traffic Management (UTM): A centralized entity
responsible of the management of drone’s flights, since
it holds information about all the drones flying in the the
areas; all information such as presence of drones, their
trajectories, locations [9], are centralized at the UTM.

The preparation of a flight plan for the mission consists of
proposing a path (or route) followed by the drone during a
given interval of time in accordance with Network Operator

Figure 1: Flight Planning actors.

infrastructure information. The flight plan needs to be later
validated by the UTM. The information that the NOP has to
indicate to prepare the flight plan is the network coverage of
the flying area, to check whether the infrastructure can offer
the needed 5G network coverage and states. For instance, if at
a given instant, the network infrastructure is overloaded with
huge traffic, ensuring very low latency to the C2 link for UAV
may be difficult. In this case the flight plan should be modified,
and another flight time should be proposed. Obviously, we
assume that the NOP is aware of the state of network in
its infrastructure during the day long. Another information
that the NOP should provide is the number of MEC servers
and their mapping with 5G base stations. At this step, our
proposed algorithm proceeds, by helping the Drone operator
to find a path that reduces the number of service relocation,
and avoid overloaded base stations. Regarding the UTM, the
validation consists of checking if the area is safe in terms of
environmental conditions (Weather, accidental zones...), and
UAVs collisions; for example, if the proposed flight plan is in
an area where other Drones are flying in the same altitude, then
there will be a risk of conflicts and collisions between drones,
which means that the flight plan will be rejected and another
flight plan should be proposed. The Flight Preparation step
ends with a validated and agreed on flight plan, which contains
the list of cells followed by the drone, and the corresponding
time.

III. THE PROPOSED SOLUTION

A. System modeling

As stated earlier, our proposed algorithm intervenes at the
route planning step of the mission preparation. As usually
modeled, the mobile network is composed of a set of base
stations, where each base station has an hexagonal coverage
[10]. In Fig. 2a, we show an example of a mobile network
topology, where each MEC Server (noted edge) covers an area
composed of a group of cells. The Drone Pilot application
can be deployed at the MEC server to ensure low latency.
We used colors to show the relation between a MEC server



(a) Topology Edges
(b) Topology Points

Figure 2: Network Topology

and a group of cells it covers. Let us suppose that a mission
consists of flying a drone from a point A to point B (see
Fig. 2b), in different areas. We consider then that the Drone
Pilot application is first instantiated in Edge1 server as it
covers the initial position of the drone. Then, the Drone Pilot
application is migrated among the servers according to the
drone mobility.

The straight path between the two points consists in min-
imizing the distance traveled by the drone. But, in some
cases, like the one depicted in Fig. 2b, the straight path
between the two points will require not less than three service
migrations, since the drone will pass through both Edge1,
Edge6, Edge3 and finally Edge4; which requires to migrate
the Drone Pilot application accordingly. This would impact the
performances of the C2 link as the duration of downtime could
be consequent. However, from Fig. 2b, we can see that another
path is much more interesting, in terms of service migrations;
if the drone goes from Edge1 to Edge2, then to Edge4, it will
get to the final destination with only two service migrations,
which will considerably reduce the downtime duration. Hence,
there is a need of an algorithm that returns the best path
between the two points, in terms of minimizing the number
of service migrations.

B. Problem formulation

We propose to model the network topology of Fig. 2 by
an oriented graph, where: the vertices represent the cells, the
edges are weighted with either the distance between the two
cells, or the cost of service migration in the case where the two
cells are under the coverage of different edges. The objective
is to find the optimal trajectory, i.e. a set of cells to cross
through that reduces the service migrations from the starting
to the landing point. We denote by Ei, the Edge server covering
the area {C1i, C2i, ..., Cni}, which consists of a set of cells,
where C ji represents the cell identified by j in the area covered
by the Edge Ei. As indicated earlier, we model the topology
as a non oriented graph (V , E) where V is the set of cells

{C11, C21, ..., Cn1, ..., C1k, C2k, ..., Cnk}, k is the number of
cells per Edge node, and n is the number of Edges.

We denote by w(i, j)(k,m) as the weight between two neigh-
boring, i.e. Ci j and Ckm, which represents the cost of the
service migration if the two cells are not under the same edge
coverage, or the distance between them if they are in the same
area. In our case, since the topology has a hexagonal form, all
the distances are similar, and equal to 1 for simplicity. Such
a graph is depicted in Fig. 3, where C is the fixed service
migration cost between two edges.

Figure 3: Graph Topology Weights.

As indicated earlier, another parameter that may impact the
C2 link performances (i.e. latency) is the fact that a selected
cell may be overloaded during the flight period, by other types
of network traffic. Therefore, we add another parameter to the
model, which is the cell overload probability (noted P(t)) that
indicates the overload of a cell at an instant t. For example, at
a given time, every cell of the topology will have a probability
of being overloaded; indeed the probability of finding a cell
busy at the rush time is different from other periods of the day.
To introduce this parameter to our model, we include it in the
weight of the edge between the cells. This way the selected
path will consider the distance, the service migration cost, and
the overloading of the destination cell. P(t) can be computed
with the use of a forecasting model, trained using collected
data on the mobile network traffic dynamic [11]. We derive
the weight w(i, j)(k,m) of an edge (Fig. 4) as follows:

w(i, j)(k,m)(t) =
{

1+Pkm(t) if j = m
C+Pkm(t) else (1)



where Ci j is the source cell, Ckm the destination cell, t the
requested instant and Pkm(t) the probability of the cell Ckm
being overloaded at the instant t.

Figure 4: Graph Topology Weights.

To tune the impact of C and Pkm on the edge’s weight, which
will drive the solution, we introduce a coefficient, noted α .
Now the edge weight is expressed as follows:

w(i, j)(k,m)(t) =
{

1+(1−α)Pkm(t) if j = m
αC+(1−α)Pkm(t) else (2)

where (0 ≤ α ≤ 1).
Thus, one can use the value of α to steer the solution by

giving more priority for reducing service migration, or more
priority for visiting less loaded cells. Since Pkm(t) expresses
a probability, its value is between 0 and 1, which is not the
case for the service migration cost (C). Hence, the two values
are normalized to give them the same scale, to make them
influence the model in the same way.

Having defined the weight of the link connecting two adja-
cent nodes (neighbor cells), we denote by P=(c1,c2,c3, ...,cn}
a path in V ; where ci ∈V , and ci, ci+1 are two adjacent nodes.
We note by f (ci,ci+1) the function that returns the weight
of the link between ci and ci+1 as defined in equation (2).
Now the problem consists in finding a path P that minimizes
∑i=1

n−1 f (ci,ci+1).

C. Resolution

To find the optimal path P, considering both the service
migration and the cell overload, from the initial point to the
landing point, we propose two algorithms. The first one is
based on the well-known Djikstra algorithm [12]; while the
second one is based on a greedy algorithm (Prim [13]). The
two proposed algorithms are not sensitive to any use-case,
since they just compute the best path regarding the chosen
metrics.

1) Djikstra-based: The Djikstra-based algorithm calculates
for each node, the shortest distance from the source node to
it. To do that, it first initializes the initial node with a current
distance of 0 and the distances of the remaining nodes with
infinity. Then, it sets the non-visited node with the smallest
current distance as the current node (S). For each neighbor
(N), it adds the weight of the connection between S and N to
the distance from the source to S. If the new value is smaller
than the previous distance from the source to N, it updates
the latter with the calculated value. It repeats this process
until all nodes are visited. Our contribution to the Djikstra
algorithm is the usage of the overload probability of the target
node when we compare and update the distances from the
source node. Indeed, instead of taking only the weight of the
connection between the nodes, we add the probability value
to that connection.

Algorithm 1: Djikstra-based Algorithm

P := {};
d[S] := ∞ for all S in the graph;
d[start] := 0;
while There is a node out of P do

Choose a node S out of P with min distance d[S];
Put S in P;
for Each node B out of P and neighbor of a do

if d[B] > d[S] + weight(S,B) +
overload_probability(B) then

d[b] := d[a] + weight(S,B) +
overload_probability(B);

previous[B] := S;
end

end
end

2) Prim-based: In addition, to the Dijkstra-based algo-
rithm, we also introduce a greedy one, namely Prim algorithm
[13]. It creates from a given graph, the Minimum Spanning
Tree (MST), which is another graph extracted from the initial
one, where all the vertices are connected via a path, and
where the sum of all the weights is the minimum, taking into
consideration the service migration as well as the overload
probability. This algorithm first initializes the MST as an
empty set, and then takes at every step the minimum weight
edge from the initial graph, and add it to the MST in the
case that an edge is valid. A valid edge between two nodes
is when one end of it is already included in the MST and the
other one is not. These steps are repeated, and the number of
edges in MST (nbEdges) is incremented at each step until the
MST holds a number of edges equal to the number of nodes
in the initial graph (graphSize) minus 2 (nbEdges = graphSize
- 2). Once the MST is formed, we reconstruct the path from
a source to a target node using Breadth-first search algorithm
[14], which is an algorithm for exploring a graph by going
through all of the neighbor nodes at the present depth, then
moving on to the nodes at the next depth level and so on, until
we find the target node. This way we give the expected path
using Prim algorithm.

Algorithm 2: Prim-based Algorithm

nbEdges := 1;
MST := {};
while nbEdges < graphSize - 1 do

Find minimum weight edge E;
If E is valide edge then add it to MST;
nbEdges := nbEdges +1;

end



Figure 5: Metrics evolution for Scenario 1.

IV. PERFORMANCE EVALUATION

A. Topology and considered scenarios

To evaluate the performances of both algorithms, we exe-
cuted them on the topology of Fig. 2. Note that this topology is
just an example, we assume that each NOP has such a model
for the geographical locations covered by its mobile network.

We considered two scenarios for tuning the expected so-
lution; i.e. giving more priority for minimizing the service
migrations, or for avoiding overloaded cells. To achieve this,
we selected different values of α . It is worth noting that
for all the scenarios, the migration cost C and the overload
probability P(t) are normalized to give the same scale to the
two parameters, by simply multiplying P(t) by 10, since the
chosen default value of the service migration cost is 10, and the
overload probability is ranged between 0 and 1. Any other way
of normalization between the two variables can be easily done.
From this point, all the values of C and P(t) are normalized.

• Scenario 1: In this scenario, more weight is given to the
service migration, i.e. the expected solution tends to pass
through an overloaded cell than to migrate a MEC service.
The value that we used for alpha is α = 0.8, so that the
migration cost is greater than the overload probability.

• Scenario 2: Unlike Scenario 1, in this scenario, more
weight is assigned to the overload probability, i.e. the ex-
pected solution avoids overloaded cells, and accepts more
service migrations. We used for this scenario α = 0.2,

Figure 6: Metrics evolution for Scenario 2.

which will make the overload probability greater than the
migration cost.

As stated earlier, we use the example of Fig. 2, which consists
of a topology formed by 68 cells. For each scenario, we
measure the performances of the three solutions in terms of the
number of service migration, and the number of used cells that
are overloaded. To measure the number of service migration,
we first generate in a random way the overload probabilities of
the cell and we vary the number of Cells per MEC Edge from
4 to 22; while for the number of overloaded cells we fixed the
number of cells (9 per Edge server) covered by an Edge server
and vary the number of overloaded cells in the topology. We
assume that a cell is overloaded when its overload probability
exceeds a certain threshold fixed by the Network owner (0.5
for example). For a sake of comparison, we also execute
the Djikstra algorithm (As default in the figures) to find the
shortest path, i.e. the weight of the graph edges are all equal to
1. This way, we obtain the shortest path, in terms of distance,
between the initial and landing point. We then compute the
number of service migrations and overloaded cells used by
the path found by the three algorithms.

B. Results

Figures 5 and 6 show the performances of the three so-
lutions, in terms of the two metrics, for scenario 1 and 2,
respectively. The algorithms were implemented in Python. For
both scenarios the number of service migration decreases as



the number of cells per edge increases, which is logical as
the higher the number of cells inside an edge is, the lesser
the number of edges is, and the lesser the number of service
migration is. Similarly, the number of overloaded cells selected
in the proposed path increases as the number of overloaded
cells in the topology increases. This is obvious as the higher
the number of overloaded cells in the whole topology is, the
higher the number of overloaded cells selected in the proposed
path is. In addition, we remark that in Scenario 1 both
algorithms (i.e. Djikstra-based and the default) achieve similar
results and the best performances in terms of the number of
service migrations. However Djikstra-based algorithm gives
better results in terms of the number of overloaded cells held
in the path. We argue this by the fact that the default algorithm
finds always the same solution as the objective is to select the
shortest path; while the Djikstra-based algorithm takes into
consideration both metrics, by giving more weight for reducing
the number of service migration. We also note that the greedy
algorithm gives the worse solution than the two other solutions
for both metrics.

For scenario 2, we see in Fig. 6 (a) that the Djikstra-
based algorithm behaves as the default solution in terms of the
number of service migration, while it achieves the best results
in terms of the number of overloaded cells selected in a path
(Fig. 6 (b)). We justify this by the fact that using the shortest
path allows having interesting solutions for service migrations,
while the Djikstra-based algorithm is seeking solutions that
rather find a trade-off between the two metrics, with more
weight given to reduce the number of overloaded cells. Indeed,
we observe clearly in Fig. 6 (b) that the Djikstra-based
algorithm achieves the best results in terms of the number
of overloaded cells in the topology.

It is worth mentioning that, in the case of the Djikstra-based
algorithm, the number of service migration in Scenario 2 is
higher than in Scenario 1 (they are mostly between 3 and 8 in
Scenario 2, while in Scenario 1 they are between 2 and 4). We
argue this by the fact that the Djikstra-based algorithm gives
more importance for avoiding the overloaded cells, which
means that the model favorites a path with less overloaded
cells. For the same reason, the number of overloaded cells
runs through is less in Scenario 2 than in Scenario 1 (they are
between 2 and 4 in this scenario while in Scenario 1 they are
between 3 and 5).

These results clearly prove that our model is sensitive to
the parameters’ weights, which allows the Drones Operator to
tune the model depending on its wishes, whether it wants to
reduce the service migrations or the overloaded cells, or even
equitably considering both parameters. Note that the difference
between those numbers in the two scenarios is not consequent
due to the used topology, where the edges are split in a way
that the service migration cannot exceed a certain number. The
difference should be more consequent and visible on a bigger
topology, where the edges are numerous, which is expected in
5G.

V. CONCLUSION

In this work, we proposed a novel algorithm that intervenes
at the flight planning step of a UAV mission, with the objective
to reduce the service migrations as well as the overloaded
cells that the drones will pass through. We have introduced
a novel metric to measure the cost of UAV Pilot migration
through Edge Servers. Based on this metric, we proposed two
algorithms to solve the problem: a Prim-based algorithm and a
Djikstra-based algorithm. Simulation results indicated that the
Djikstra-based algorithm is more efficient regarding the two
targeted metrics; hence improving the overall reliability of the
C2link, which is a cornerstone requirement to enable a large
scale adoption of UAV services and this allows the NOP to
propose the best flight in terms of connectivity. In the future,
since the proposed flight plan must be validated in terms of
flight security too by UTM, our algorithm can be improved
with a list of critical cells not to pass through, in order to
ensure the avoidance of collisions with other drones in the
same cells.

VI. ACKNOWLEDGMENT

This work was partially supported by the European
Union’s Horizon 2020 Research and Innovation Program under
the5G!Drones project (Grant No. 857031).

REFERENCES

[1] International Civil Aviation Organization. (2019) Remotely Piloted Air-
craft System (RPAS) Concept of Operations (ConOps) for International
IFR Operations.

[2] A. Ksentini, P. Frangoudis, N. Nikaein, A. PC, “Providing low latency
guarantees for slicing-ready 5g systems via two-level mac scheduling,”
IEEE Network Magazine, 2018.

[3] GSMA Public Policy Position. (2020, March) 5G Spectrum.
[4] A. Hueng, N.Nikaein, T. Stenbock, A. Ksentini, and C. Bonnet, “Low

latency mec framework for sdn-based lte/lte-a networks,” Proc. IEEE
ICC, 2017.

[5] Sarrigiannis, I., et al., “Energy-Efficient UAV-Assisted Mobile Edge
Computing: Resource Allocation and Trajectory Optimization,” IEEE
23rd International Workshop on Computer Aided Modeling and Design
of Communication Links and Networks (CAMAD), 2018.

[6] Rodrigo Romana, Javier Lopeza, Masahiro Mambo, “Mobile edge
computing, fog et al.: A survey and analysis of security threats and
challenges,” Future Generation Computer Systems, January 2018.

[7] A. Aissioui, A. Ksentini, A. M. Gueroui, T. Taleb , “On Enabling 5G
Automotive Systems Using Follow Me Edge-Cloud Concept ,” IEEE
Trans. Vehicular Technology 67(6): 5302-5316, 2018.

[8] Muhammad Arsalan Khana, Wim Ectorsa, Tom Bellemansa, Davy
Janssensa and Geert Wetsa, “UAV-Based Traffic Analysis: A Universal
Guiding Framework Based on Literature Survey,” Transportation Re-
search Procedia, 2017.

[9] Federal Aviation Administration. (2018) Unmanned Aircraft System
(UAS) Traffic Management (UTM), Concept of Operations.

[10] David A. Levine, Ian F. Akyildiz and Mahmoud Naghshineh , “A
Resource Estimation and Call Admission Algorithm for Wireless Mul-
timedia Networks Using the Shadow Cluster Concept ,” IEEE/ACM
Transactions on Networking, 1997.

[11] Imad Alawe, Adlen Ksentini, Yassine Hadjadj-Aoul, Philippe Bertin,
“Improving traffic forecasting for 5g core network scalability: A machine
learning approach,” IEEE Network Magazine, November 2018.

[12] E. W. Dijkstra, “A note on two problems in connection with graphs,”
Numerische Mathematik, 1959.

[13] R. C. Prim, “Shortest connection networks and some generalizations,”
Bell System Technical Journal, 1957.

[14] K. Zuse. Der plankalku. (1972) Der Plankalkül (BFS).


