

5G Vertical Application Enablers

Implementation Challenges and Perspectives

Dimitrios Fragkos, George Makropoulos, Panteleimon Sarantos,

Harilaos Koumaras

Institute of Informatics and telecommunications

NCSR Demokritos

Athens, Greece

{dfragkos, gmakropoulos, psarantos,

koumaras}@iit.demokritos.gr

Anastasios-Stavros Charismiadis, Dimitris Tsolkas

Fogus Innovations & Services P.C.

Athens, Greece

{charismiadis,dtsolkas}@fogus.gr

Abstract—5G system aims to enable vertical industries

utilizing network programmability to its full extension. 3rd

Generation Partnership Project (3GPP) has already established

the foundations to provide 5G Core’s capabilities to third

parties with Common API Framework (CAPIF) and Service

Enabler Layer Architecture (SEAL). Vertical application

developers communicate implicitly, through the Network

Exposure Function (NEF), to unlock the available services. As

more third parties move towards 5G ecosystem, their vertical

applications need to be scalable, robust and more secure. Cloud

native approach is the key enabler to fulfill those requirements

and empower the inherent cloud-native characteristics of the

5GC. This paper investigates how the 5G architecture will

support Vertical Application Enablers (VAEs) currently

studied in 3GPP Rel.17, and proposes cloud native alternatives

regarding VAEs implementation.

Keywords— 5G, SEAL, NEF, VAE, programmability

I. INTRODUCTION

The telecom industry was upended in 2007 with the

introduction of a new smartphone platform that was

welcomed by customers and developers alike, following

previous attempts to open cellphone handsets to third parties.

Third-party developers were given easy-to-use,

programmable Software Development Kits (SDKs) and

Application Programming Interfaces (APIs) to create new

applications for the smartphone, while unit sales soared

thanks to effective marketing and praised user experience.

The app-store for these applications launched the following

year, and other smartphone manufacturers quickly followed,

inviting programmers to create and innovate on their

platforms as well. Superior user interface, faster data rates,

and a business model that allowed programmers to reach

potentially millions of customers, propelled the mobile app

ecosystem to multi-billion-dollar status and accelerated the

mobile operating system's openness.

5G promises even more disruption in app

programmability, combining the untapped capacity of

multiple simultaneous network features and promising a new

generation of applications that deliver an unprecedented user

experience. The business potential with 5G openness is high,

considering that opening the OS of a mobile phone to external

developers impacted the mobile market, then the potential by

opening up a whole mobile network is enormous and is

expected to disrupt the vertical industries.

5G Core (5GC) network is realizing this opportunity by

securely exposing standard APIs. External third parties with

permission, such as industries, platform developers, and

designers, may use those standard APIs for building network-

aware (5G-enabled) applications, which establish a bi-

directional communication with the 5GC, retrieving network

statistics, but also triggering specific policies and commands

to the network.

The above-mentioned exposure capability is materialised

through the Service Based Architecture (SBA), adopted by

the 5GC network. Indeed, the 5GC control plane Network

Functions (NFs) communicate through API-calls that define

the related Service Based Interfaces (SBIs).

In this context, the Network Repository Function (NRF)

allows other NFs to register their services, which can then be

discovered by other NFs. This allows for a versatile

implementation, in which each NF allows other approved NFs

to access resources. In addition, the Network Exposure

Function (NEF), provides a set of northbound APIs for

exposing network data and receiving management

commands. More precisely, NEF provides adaptors for

connecting the southbound interfaces with the SBA to an

exposure layer with northbound interfaces offered to third-

party developers. In this way, NEF facilitates the safe

disclosure of network resources to third parties, such as

network slicing, edge computing, and machine learning,

allowing for the monetization of network assets and business

innovation. The functionality provided by NRF and NEF to

third parties, enables programmability and adaptability of the

5G connectivity services, and creates a new ecosystem where

third parties’ developments bridge 5G exposed capabilities

and service requirements/potentials from the vertical

industries.

In this framework, 3rd Generation Partnership Project

(3GPP) introduced the concept of Vertical Application

Enablers (VAEs) in Rel. 16, enabling the efficient use and

deployment of vertical apps over 3GPP systems. The

specifications and the architecture are based on the notion of

the VAE layer that interfaces with one or more Vertical apps.

VAEs communicate via network-based interfaces that are

well-defined and version-controlled. The focus of VAEs is to

provide key capabilities, such as message distribution, service

continuity, application resource management, dynamic group

management and vertical app server APIs over the 5G system

capabilities, as specified in [1].

From the VAE implementation perspective, cloud-native

deployment procedures in network programmability allow the

5GC to deliver the benefits of cloud technology and be ultra-

robust, secure, and scalable. Decomposing applications into

smaller, manageable parts as loosely coupled stateless

services and stateful backing services is a basic concept of

cloud-native implementation. This is typically achieved by

the use of a microservice architecture, in which each part can

be deployed, scaled, and upgraded independently. Thus, a

rapid and low-cost implementation of new services can be

achieved.

The rest of the paper is organized as follows: Section II

briefly presents the 5G architectural functions that support the

VAEs. Section III presents the cloud-native architectural

alternatives of the VAEs, while Section IV performs a

qualitative comparison of them and proposes the most

suitable approach. Finally, Section V presents the future work

and concludes the paper.

II. 5G ARCHITECTURE SUPPORTING VAES

3GPP has already established the foundations to provide

5GC Network capabilities to vertical industries. The key

concepts that has emerged are the Common API Framework

(CAPIF) and the Service Enabler Architecture Layer (SEAL)

together with NEF, as explained below.

A. CAPIF

1) CAPIF Architecture

CAPIF was introduced in 3GPP Rel. 15 [2], to enable a

unified approach between 5GC’s northbound APIs

framework and vertical apps. The key concept is the

standardization and development of the common supporting

capabilities (e.g., authentication, service discovery, charging

policies) that are applicable to northbound APIs in order to

facilitate the development of vertical apps. CAPIF consists of

the CAPIF Core Function (CCF), API Invokers and API

provider domain which comprises API Exposing Function

(AEF), API Publishing Function, (APF) and API

Management Function (AMF). The architectural model

adapted from [3] is presented in Fig. 1 and the functional

entities are briefly described as follows:

• CCF, acts as an orchestrator that manages the interaction

between service consumers (vertical apps) and service

providers (e.g., NEF, SEAL). The main responsibilities of

CCF are authentication of the API invoker, authorization

of the API invoker to access the available service APIs,

monitoring the service API invocations.

• API Invoker, represents the vertical app which consumes

the service APIs utilizing CAPIF. API Invoker provides to

the CCF the required information for authentication,

discovers and then invokes the available service APIs.

• AEF, is responsible for the exposure of the service APIs.

Assuming that API Invokers are authorized by the CCF,

AEF validates the authorization and subsequently provides

the direct communication entry points to the service APIs.

AEF may also authorize API invokers and record the

invocations in log files.

• APF, is responsible for the publication of the service APIs

to CCF in order to enable the discovery capability to the

API Invokers.

• AMF, supplies the API provider domain with

administrative capabilities. Some of these capabilities

include, auditing the service API invocation logs received

from the CCF, on-boarding/off-boarding new API

invokers and monitoring the status of the service APIs.

Fig. 1. Simplified CAPIF Architecture

3GPP considers two main architectural deployment
models, centralized, when the CCF and API Provider domain
functions are co-located, and distributed (Fig. 1), when CCF
and API Provider domain functions are not co-located and
they are interacting through CAPIF-3/4/5 interfaces.
Therefore, multiple CCFs can be deployed in the same PLMN
trust domain [3].

CAPIF is located within the PLMN operator network.
Thus, there are two functional options for API Invokers;
usually 3rd party applications, which have service agreement
with PLMN operator, represent API invokers (i.e., API
Invoker 1) but they may be co-located within the same PLMN
trust domain (i.e., API Invoker 2). Whether third parties have
business relationship with PLMN, they can provide their own
service APIs to CCF through CAPIF-3e/4e/5e interfaces, but
they need to act in accordance with the functionalities of API
provider domain. In order to be compliant with the overall
architecture (see Fig. 1), NEF and SEAL (i.e., SEAL server)
support the CAPIF’s API provider domain capabilities, as
specified in [4] and [5].

2) CAPIF Services

The available CAPIF services and their respective APIs

according to [3] are listed hereby. Services are divided into

four categories, common, security, management and internal

connectivity services:

Common Services

• Discover (CAPIF_Discover_Service_API): This service

enables API Invokers to retrieve the available services that

have been registered in CCF.

• Publish/Unpublish/Update

(CAPIF_Publish_Service_API): APF consumes this

service to publish/unpublish a service API to the CCF. The

publication includes details about the specific service API.

APF can also update already published services.

Retrieve (CAPIF_Publish_Service_API): APF requests from

CCF information related with previous published services.

When a publication occurs CAPIF registers all the related

information in a repository (i.e., API registry).

Management Services

• Logging (CAPIF_Logging_API_Invocation): Upon

invocations (i.e., from API Invokers), CCF may store

valuable information such as API invoker’s ID, IP

address, service API name etc. AEF utilizes this service to

access the potential log files that have been stored in CCF.

• Auditing (CAPIF_Auditing): This service can be used to

control CAPIF interactions with API Invokers (e.g.,

invocation events, onboarding events, authentication),

which are stored in CCF. AMF initiates a request to fetch

the respective log files.

• Charging: AEF can use this service to retrieve charging

related information flows from the CCF.

• Monitoring events (CAPIF_Monitoring): Monitoring

event service is used by AMF in order to get notified

whether an event occurs in the CCF. Some of the events

are the availability of service APIs (e.g., active, inactive),

changes in service APIs (e.g., after an update), service API

invocations, API invoker status (e.g., onboarded,

offboarded) and performance related events (e.g., load

conditions).

Security Services

• Authentication (CAPIF_Security / AEF_Security_API):

An API Invoker can be authenticated from the CCF or the

AEF. The former service enables invoker to initiate a

direct request to the CCF. Otherwise, AEF authenticates

an invoker with assistance from CCF. The authentication

occurs prior or upon an invocation.

• Authorization (CAPIF_Security / AEF_Security_API):

After authentication occurs, API Invokers initiate requests

to retrieve service APIs. AEF checks whether the invoker

is authorized to do so. If the AEF does not have the

required information for authorization, AEF inquires

CCF. Thus, AEF and CCF can invalidate invoker’s

configured authorization at any moment.

• Access control policy (CAPIF_Access_Control_Policy):

This service enables AEF to obtain the configured policies

to perform access control on the service API invocations.

• Registration of provider domain: This service enables

AMF to register the API provider domain functions to

CCF in order to be authorized and use CAPIF’s

functionalities

• On/off boarding (CAPIF_API_invoker_management):

This service enables API Invokers as recognized users of

the CAPIF. Invokers initiate the on-boarding process by

sending a request to the CCF. If the enrolment information

provided is valid, CCF on boards invokers and creates a

new profile, which is sent back upon the response. API

Invokers can also cancel their on-board status.

Internal connectivity

• CCF interconnection (CAPIF_Discover_Service_API /

CAPIF_Publish_Service_API): This service enables the

interconnection between multiple CAPIF providers. Each

CAPIF provider has a CCF which utilizes publish and

discover services in order to interchange its APIs.

• Topology hiding (CAPIF_Routing_Info): This service

enables hiding the topology in the functional scenario

where CAPIF includes PLMN trust domains, third party

domains and API invokers access the service APIs from

outside both the PLMN and third-party trust domains. In

this case, API invokers access an AEF which acts as an

entry point. Thus, the information for the entry AEF is

shared with API Invoker in the discovery service. Then,

subsequently, AEF resolves the actual destination address

of the requested service API and forwards the initial

request.

The abovementioned services need to fulfill the
authentication and authorization prerequisites. The
capabilities of the services are presented under the assumption
that API provider domain functions (i.e., AEF, APF, AMF)
and API Invokers are already authorized by the CCF and they
are active. The detailed security aspects are specified by
3GPP in [6].

B. SEAL

1) SEAL Architecture

SEAL was introduced in Rel. 16 to support easier and

faster development and deployment of vertical apps [7].

While the demand to develop vertical app standards for

different types of industries was continuously increasing, it

became obvious that many auxiliary services, such as location

management, are needed across multiple vertical apps. As a

result, capturing these commonly used auxiliary services and

offering them to verticals as a common service layer, will

benefit both verticals, allowing them to focus only on the core

features and functionality of the vertical app, and operators,

saving them from enormous efforts and time to develop the

corresponding services for each vertical. The above concept

became reality with the standardization of SEAL architecture

[5]. SEAL architecture enables these common services to be

consumed by vertical apps over 3GPP, CAPIF compliant,

northbound APIs. SEAL architecture supports two functional

models: on-network (i.e., SEAL-Uu), when the UE connects

to the 3GPP network system to consume the service, and off-

network (i.e., SEAL-PC5), when UEs connect to each other

directly. The functional architecture is depicted in Fig. 2. For

simplification, we consider only the on-network model.

The main functional entities of SEAL architecture are the

following:

• Vertical Application Layer Client (VAL client): This entity

provides the client-side functionalities of the corresponding

vertical app (e.g., Vehicle to Everything (V2X) client).

• Vertical Application Layer Server (VAL server): This

entity provides the server-side functionalities of the

corresponding vertical app (e.g., V2X application server).

If CAPIF is supported, VAL server acts as an AEF to

provide the service APIs to the Vertical Application Server

(VAS) or another VAE server. It can also act like an API

Invoker to consume the service APIs, whether they

provided by another VAL server.

• SEAL Client: This entity provides the client-side

functionalities corresponding to a specific SEAL service

(e.g., Location Management client)

• SEAL Server: This entity provides the server-side

functionalities corresponding to a specific SEAL service

(e.g., Location Management server). It can act as CAPIF’s

API exposing function.

Various deployment scenarios have been proposed in

SEAL architecture, concerning the domain in which SEAL

servers are deployed. According to [5] the SEAL servers can

be deployed: a) in a single PLMN operator domain

(centralized deployment), b) in multiple PLMN operator

domains, as distributed function, with or without

interconnection between the SEAL servers, c) in the VAL

service provider domain or d) in a separate SEAL provider

domain.

2) SEAL Services

The following section describes the common set of SEAL

services designed to be used by vertical apps.

• Location Management : Enables the vertical app to have

access to network location information of its corresponding

UEs. More specifically, this service can send reports on-

demand to a VAS about the location of its UEs, subscribe

the VAS so as to receive notification when location

information of UEs changes, share UE location information

etc.

• Group Management: Allows vertical apps to group UEs,

thus enabling group management operations, such as

enforce group policies, edit group configurations etc. The

service also allows the vertical app to subscribe for and

receive notifications when group information or status is

modified.

• Configuration Management: Enables the vertical app to

create and manage configuration on its UEs (provide initial

configuration, edit configuration, notify server when

configuration changes etc.)

• Identity Management: This service is responsible for the

authentication and authorization procedures of a vertical

app user.

• Key Management: Enables a vertical app to support secure

transfer of data by providing and storing encryption keys.

• Network Resource Management: Allows a vertical app to

manage network resources by managing (create, modify,

delete) unicast and/or multicast bearers.

C. VAE Layer

VAE layer acts as a support layer between SEAL and a

specific vertical application layer (e.g., V2X application

client and server). VAE layer, by utilizing SEAL/NEF APIs

and translating all the underlying network data to vertical

application specific, enables the deployment of the actual

vertical app. The functional model of VAE layer is depicted

in Fig. 2. Similarly, to SEAL architecture, VAE supports both

on-network and off-network model. Note that, both VAE

Client and VAE Server are mutually-exclusive with VAL

Client (SEAL) and VAL Server (SEAL), respectively.

The most important entities of the VAE architecture are

the following:

• Vertical application specific client: Provides client-side

functionalities corresponding to a specific vertical app

(e.g., a platooning client in V2X use case).

• Vertical application specific server: Provides server-side

functionalities corresponding to a specific vertical app

(e.g., a platooning server in V2X use case). As mentioned,

vertical app can act as an API invoker, if CAPIF is adapted.

Specifically, vertical app’s server side represents the

invoker [1].

• VAE client: Provides the client-side support functions for a

specific vertical app (e.g., deliver application messages to

vertical app clients, receive monitoring reports from VAE

server, provide location information to VAE server etc.)

• VAE server: Provides the server-side support functions for

a specific vertical app (e.g., communicate with the

underlying network, provide service discovery, support

resource adaptation etc.).

Fig. 2. VAE-SEAL Functional Model

According to [1], VAE server can be deployed either in a

centralized manner, in which one VAE server supports one or

more vertical app specific servers, or in distributed manner, in

which one or more VAE servers (with or without

interconnection between them) support one vertical

application specific server. Furthermore, the VAE server can

be deployed either in a PLMN operator domain or in a vertical

service provider domain.

As mentioned, VAE layer, utilizes the capabilities of the

underlying SEAL, thus it provides additional vertical specific

capabilities to enable the applications. 3GPP has already

specified the VAE architecture for Vehicle to Everything

(V2X) services [1]. Procedures and information flows of

services are already described and some of them are offered

as APIs. Interestingly, some examples for V2X services are

V2X UE registration, application-level, location tracking, file

distribution, V2X application resource management etc.

Work and studies are ongoing also for Factories of the Future

(FOF) and for Unmanned Aerial Systems (UAS), in TR

23.745 and TS 23.255 respectively.

III. VAE IMPLEMENTATION ALTERNATIVES

To unlock the full potential of the 5G, the transition to a
cloud native 5GC is an auspicious approach. However, the
cloud-native deployment does not only refer to the 5GC, as it
can have a direct impact to vertical specific applications as
well, leveraging specific features in order to meet the
requirements of the industry verticals. In the light of the
above, this section describes three different cloud native
approaches towards the deployment of the VAE, where the
software is built upon microservices that can act
independently.

A. Container-based Deployment

 In the case that the VAE makes use of multiple processes,

the deployment could be realized using a Container Platform.

The architectural approach of the proposed deployment is

depicted in Fig. 3. The specific implementation provides an

advantage in terms of flexibility to the developer during the

coding process by allowing the use of simple tools towards

the “packing” of the VAE to an image. The implementation

of a REST API for the callback updates from the 5GC is also

deemed necessary and the latter can also act as the endpoint

to receive requests from the vertical app. To that end, a

common library or framework can be utilized, so as to avoid

coding the REST API backend from the beginning.

Fig. 3. Container-based VAE realisation

B. Function as a Service (Faas) Deployment

When the VAE acts as a micro service (i.e. exposing
Southbound APIs to other services and applications), the
utilization of the Function as a Service (FaaS) ecosystem
allows the deployment of the VAE in a serverless
environment [8]. Fig. 4 represents the reference architecture
of the proposed FaaS approach. By adopting a serverless
approach, the VAE automatically excludes the option to have
a built-in API backend, thus the vertical app can use the REST
API endpoints of the FaaS Platform to communicate with the
VAE. The VAE can also configure “on the fly” endpoints on
the FaaS API in order to receive asynchronous callbacks from
the 5GC. An optional database can be used from the VAE to
empower a stateful approach. By this means, the VAE will be
enhanced in terms of efficiency and can be treated as a
standalone extension of the vertical app. The developer of the
vertical app has the liberty to add processes and increase the
complexity of the system, by offloading additional functions
of the vertical app to the VAE framework. Using a FaaS
approach is a straightforward process to horizontally scale
across multiple end-devices, either statically or dynamically.
The term dynamically, refers to the case that the administrator
of the FaaS platform can configure limits that will increase or
decrease the replicas of a VAE ad-hoc, based on the number
of requests (or any other resources).

Fig. 4. FaaS-based VAE realisation

C. Container Deployment with a Message BUS

When the VAE acts as micro-services, an alternative
approach beyond the containerised deployment, enhancing
the overall architecture, is the utilization of a communication
framework between the VAE and the vertical
application/service. A suitable candidate technology-enabler
is a common Message Bus channel using message queue
service, that can be applied to handle all the asynchronous
interactions between the actors of the ecosystem (i.e., vertical
app, VAE, clients). The architecture is depicted in Fig. 5.

Fig. 5. Container with a message bus-VAE

The bridging of the vertical app with VAE can be
achieved via the publish/subscribe mode that the protocol
provides, acting as an alternative solution to the traditional
client-server communication model with endpoints. In such
case a Message Queuing Telemetry Transport (MQTT)
broker acts as an intermediate for the Message Queuing (MQ)
client sending messages and the subscriber (vertical app) who
is receiving those messages. However, the VAE requires a
REST API backend in order to support the communication
with the 5GC. Additional services (e.g., databases) could also
be supported by the proposed architecture, thus fulfilling the
MQ requirements.

IV. QUALITATIVE COMPARISON OF THE DIFFERENT VAE

IMPLEMENTATION ALTERNATIVES

With the aim to highlight the pros and cons and evaluate
the efficiency of the proposed cloud-native implementations,
this section provides a qualitive comparison towards a list of
KPIs that were deemed suitable for all the aforementioned use
cases. The defined KPIs, in order to cross-evaluate the three
different approaches, include efficiency in terms of coding,
scalability and agility, as well as communication and function
decoupling.

A. Qualitative Evaluation of VAE Implementation

Alternatives

1) Container-based Deployment Qualitative Evaluation
Due to the fact that all the libraries for the VAE

implementation can be bundled within the selected image,
deploying the VAE as a Container is a simple and effective
approach. The dependencies between the components of the
system can be isolated, allowing for the inclusion of several
secondary applications, such as a database, allowing the
provision of more complex VAEs and the support of
advanced vertical services and applications. Since most
container engines now operate across several platforms, the
process requires a smaller set of programming skills,
facilitating significantly the development efforts, as well as
the technical expertise needed to deal with the programming
task.

However, the underling container platform adds a
noticeable overhead in terms of performance, but it can be
discounted compared to the management benefits that
provides. It is worth noting that the scalability process
requires both the VAE, as well as any additional applications,
such as databases, to conform with horizontal scaling.
Furthermore an additional load balancer may be required, as
the VAE implementation increases the overhead effect, thus
affecting both management and performance capabilities.

2) FaaS-based Deployment Qualitative Evaluation

The FaaS model deployment allows the automatic and
independent scaling in horizontal manner, thus representing
an efficient implementation towards the service of an
application. Moreover, it utilizes effectively system’s
resources, either on demand (dynamically) or with a
predefined process. However, a drawback towards the
specific deployment, is the fact that the developers have to
establish the implementation of the VAE via the FaaS
framework, based on the learning curve that the platform
indicates. The management of the overall system is highly
dependent on the maturity and the abstraction level of the
FaaS platform. In order to support a production environment,
the use of a FaaS platform, promoted by a wide community,
is recommended. As far as the performance of the system is
concerned, since a FaaS deployment uses an underling
container platform, overhead is being added due to the
provision of the Docker Engine. Most FaaS implementations
bring up to the surface the cold start issue, which has an effect
on certain types of applications, where latency is critical.

3) Container Deployment with a Message BUS

Qualitative Evaluation
The Message Bus implementation aims to simplify the

front-end interface by using an Message Queue (MQ)
communication protocol. Adopting this approach can result in
a more efficient adaptation and consumption of the
request/replies by the vertical app. Most MQ communications
are implemented in a publish/subscribe manner, thus various
aspects of the vertical app can be subscribed or publish to the
VAE. This method could enable the vertical app to expose the
VAE API to the clients as well via direct communication.
Moreover, the asynchronous communication enabled by the
message queues, optimizes the data flows between the
components, resulting in better performance of the system.
With respect to the overall management of the architecture,
the queues reduce the dependencies between the involved
components leading to coding simplicity.

B. Cross Comparison Score and Technology Selection

 Table I comprises the qualitive cross comparison KPIs for
the proposed VAE implementations, according to the
aforementioned qualitative analysis.

TABLE I. QUALITATIVE COMPARISON OF KPIS

Criterion/KPI

Implementation Approach

Isolated

Container

Container

with FaaS

platform

Containers

with Message

Bus

Vertical Scaling * *** **

Horizontal Scaling *** ** **

Technology

Maturity

*** * **

Orchestration

Options

*** * **

Code management *** ** **

Performance * ** **

Data and control
decoupling

** ** ***

SCORE 76% (16/21) 62% (13/21) 71% (15/21)

According to Table 1, the various KPIs are listed,
considering the agility of the deployment option, as well as
the scaling easiness, the technology maturity, but also the
orchestration options, together with coding requirements and

performance aspects, as well as data and control decoupling.
The comparison shows that all alternatives achieve a
satisfactory score. However, the isolated container approach
seems to be more preferable, since its simplicity contributes
to its easiness in terms of code management, scaling and
orchestration options. Also technology maturing plays a
significant role, especially for deployments within a
production environment, such as a 5G network of a mobile
operator. The additions of a message BUS, seems also to be a
highly preferable solution, since it decouples the control plane
from the data plane, allowing policies enforcement and
prioritization in the message management and the executions
of functions. Finally, the FaaS framework, also scores high,
and it seems to be the rest preferable approach, mainly due to
the extra complexity that it introduces, which affects also the
performance and the scaling capabilities of the overall system,
considering also its impact on the orchestration. Moreover,
the FaaS framework may cause also a technology locked-in,
which will affect the smooth evolution of the platform in case
that the FaaS framework does not continue to fost and grow
as expected.

V. CONCLUSIONS

This paper presented the SBA of the 5GC Network, and

3GPP’s pioneering frameworks that enable data exposure to

third parties through the northbound APIs. CAPIF, SEAL and

VAE are undoubtedly the key enabling frameworks to unlock

the capabilities of a programmable 5G network. Three cloud

native architectural approaches for the communication

between the network interfaces and the VAE were proposed

and a qualitive comparison was performed in order to

showcase the most efficient solution.

ACKNOWLEDGMENT

The work in this paper has been funded by the H2020/5G-

PPP Research Projects EVOLVED-5G (Grant Agreement

no. 101016608) and 5G!Drones (Grant Agreement no.

857031).

REFERENCES

[1] 3GPP TS 23.286, “Application layer support for Vehicle-to-
Everything (V2X) services”, Release 17, V17.1.0, April 2021

[2] N. D. Tangudu, N. Gupta, S. P. Shah, B. J. Pattan and S. Chitturi,
"Common Framework for 5G Northbound APIs," 2020 IEEE 3rd 5G

World Forum (5GWF), Bangalore, India, 2020, pp. 275-280, doi:
10.1109/5GWF49715.2020.9221161

[3] 3GPP TS 23.222, “Common API Framework for 3GPP Northbound
APIs”, Release 17, V17.4.0, April 2021

[4] 3GPP TS 23.501, “System architecture for the 5G System (5GS)”,
Release 17, V17.0.0, March 2021

[5] 3GPP TS 23.434, “Service Enabler Architecture Layer for Verticals

(SEAL)”, Release 17, V17.1.0, April 2021

[6] 3GPP TS 33.122, “Security aspects of Common API Framework
(CAPIF) for 3GPP northbound APIs”, Release 16, V16.3.0, July 2020

[7] S. P. Shah, B. J. Pattan, N. Gupta, N. D. Tangudu and S. Chitturi,
"Service Enabler Layer for 5G Verticals," 2020 IEEE 3rd 5G World
Forum (5GWF), Bangalore, India, 2020, pp. 269-274, doi:
10.1109/5GWF49715.2020.9221425

[8] E. V. Eyk, A. Iosup, S. Seif and M. Thömmes, “The SPEC cloud
group's research vision on FaaS and serverless architectures”,
Proceedings of the 2nd International Workshop on Serverless
Computing (WoSC ’17), New York, USA, December 2017, pp. 1-4,
doi: 10.1145/3154847.31548

